Introduction to NGS

Learn how the technology works and what it can do for you

Next-Generation Sequencing (NGS)

The massively parallel sequencing technology known as next-generation sequencing (NGS) has revolutionized the biological sciences. With its ultra-high throughput, scalability, and speed, NGS enables researchers to perform a wide variety of applications and study biological systems at a level never before possible.

Today's complex genomic research questions demand a depth of information beyond the capacity of traditional DNA sequencing technologies. Next-generation sequencing has filled that gap and become an everyday research tool to address these questions.

Welcome to NGS
Next-Generation Sequencing for Beginners

We'll guide you through the basics of NGS, with tutorials and tips for planning your first experiment.

Get Started

NGS technology has fundamentally changed the kinds of questions scientists can ask and answer. Innovative sample preparation and data analysis options enable a broad range of applications. For example, NGS allows researchers to:

  • Rapidly sequence whole genomes
  • Deeply sequence target regions
  • Utilize RNA sequencing (RNA-Seq) to discover novel RNA variants and splice sites, or quantify mRNAs for gene expression analysis
  • Analyze epigenetic factors such as genome-wide DNA methylation and DNA-protein interactions
  • Sequence cancer samples to study rare somatic variants, tumor subclones, and more
  • Study the human microbiome
  • Identify novel pathogens

Explore Sequencing Methods and Uses

Using capillary electrophoresis-based Sanger sequencing, the Human Genome Project took over 10 years and cost nearly $3 billion.

Next-generation sequencing, in contrast, makes large-scale whole-genome sequencing (WGS) accessible and practical for the average researcher. It enables scientists to analyze the entire human genome in a single sequencing experiment, or sequence thousands to tens of thousands of genomes in one year.

Learn More About WGS

NGS Data Analysis Tools

Explore user-friendly tools designed to make data analysis accessible to any researcher, regardless of bioinformatics experience.

Learn More
Using NGS to Study Rare Undiagnosed Genetic Disease

Whole-exome and transcriptome sequencing prove beneficial in uncovering mutations and pathways associated with rare disease.

Learn More

Broad Dynamic Range for Expression Profiling

NGS-based RNA-Seq is a powerful method that enables researchers to break through the inefficiency and expense of legacy technologies such as microarrays. Microarray gene expression measurement is limited by noise at the low end and signal saturation at the high end.

In contrast, next-gen sequencing quantifies discrete, digital sequencing read counts, offering a broader dynamic range.1,2,3

Compare Arrays vs. RNA-Seq

Tunable Resolution for Targeted NGS

Targeted sequencing allows you to sequence a subset of genes or specific genomic regions of interest, efficiently and cost-effectively focusing the power of NGS. NGS is highly scalable, allowing you to tune the level of resolution to meet experimental needs. Choose whether to do a shallow scan across multiple samples, or sequence at greater depth with fewer samples to find rare variants in a given region.

Learn more about:

NGS for COVID-19

Next-generation sequencing is uniquely positioned in an infectious disease surveillance and outbreak model. Learn which NGS methods are recommended for detecting and characterizing SARS-CoV-2 and other respiratory pathogens, tracking transmission, studying co-infection, and investigating viral evolution. 

Explore Coronavirus NGS Methods
COVID-19 Solutions

Illumina sequencing utilizes a fundamentally different approach from the classic Sanger chain-termination method. It leverages sequencing by synthesis (SBS) technology – tracking the addition of labeled nucleotides as the DNA chain is copied – in a massively parallel fashion.

Next-generation sequencing generates masses of DNA sequencing data, and is both less expensive and less time-consuming than traditional Sanger sequencing.2 Illumina sequencing systems can deliver data output ranging from 300 kilobases up to multiple terabases in a single run, depending on instrument type and configuration.

Learn More About SBS

Alt Name
In-Depth NGS Introduction Introduction

In-Depth NGS Introduction

This detailed overview of Illumina sequencing describes the evolution of genomic science, major advances in sequencing technology, key methods, the basics of Illumina sequencing chemistry, and more.

Read Introduction
Genetics of COVID-19 Susceptibility

This UK-wide study uses NGS to compare the genomes of severely and mildly ill COVID-19 patients, to help uncover genetic factors associated with susceptibility.

Read Article
Exploring the Tumor Microenvironment

Researchers use single-cell techniques to study cancer microenvironments, to elucidate gene expression patterns and gain insights into drug resistance and metastasis.

Read Article
Blood Pressure and Exercise

When qPCR provided “hit-and-miss” results, researchers switched to NGS and discovered exercise intensity-dependent variants linked to blood pressure.

Read Article

Recent Illumina next-generation sequencing technology breakthroughs include:

  • Semiconductor sequencing with CMOS technology: The iSeq 100 System combines a complementary metal-oxide semiconductor (CMOS) chip with one-channel SBS to deliver high-accuracy data in a compact system.
  • 2-channel SBS: This technology enables faster sequencing than the original 4-channel version of SBS technology, with the same high data accuracy.
  • Patterned flow cell technology: This option offers an exceptional level of throughput for diverse sequencing applications.
  • Up to 6 terabases (Tb): Learn how the NovaSeq 6000 System offers tunable output of up to 6 Tb in ~2 days.
  • 75 breakthrough innovations: The NextSeq 1000 and 2000 Systems offer flexibility for emerging applications, our simplest workflow yet, and data analysis in as little as 2 hours.   
History of Illumina Sequencing

Find out how Illumina SBS technology originated and evolved over time.

Learn More

The resources below offer valuable guidance to researchers who are considering purchasing an NGS system.

Find the Right NGS Platform

Use our interactive platform selection tool to identify the right sequencer for your needs.

Launch Tool
Methods Guide

Access the information you need—from BeadChips to library preparation for genome, transcriptome, or epigenome studies to sequencer selection, analysis, and support—all in one place. Select the best tools for your lab with our comprehensive guide designed specifically for research applications.

Access Guide
Methods Guide

Learn about read length, coverage, quality scores, and other experimental considerations to help you plan your sequencing run. You can use our interactive tools to help you create an NGS protocol or select the right products and methods for your project.

Learn More

Publication Reviews

These reviews highlight some of the key ways NGS technology is furthering scientific research, in areas ranging from gene editing to single-cell analysis, cell biology, microbiology, and more.

Read Reviews
Illumina Pledges US $20 Million in Sequencing Tech for Africa
Illumina Pledges US $20 Million in Sequencing Tech for Africa

Photo: Adeyinka Yusuf/iStock

Read Article
Using Genetic Testing to Advance Cancer Care
Using Genetic Testing to Advance Cancer Care

Australia-based XING Cancer Care is analyzing tumor DNA with the goal of improving cancer treatment.

Read Interview
DRAGEN Shines at PrecisionFDA Truth Challenge
DRAGEN Shines at PrecisionFDA Truth Challenge

Illumina sequencing and software analysis are best in class for accuracy

Read Article

Use our next-generation sequencing glossary to clarify key terms and important concepts as you plan your sequencing project.

View Glossary

Interested in receiving newsletters, case studies, and information from Illumina based on your area of interest? Sign up now.